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Analysis of the Dependence of Acid Dissociation Constants on Temper- 
ature 
By Michael J. Blandamer," Department of Chemistry, The University, Leicester LE1 7RH 

John W. M. Scott, Department of Chemistry, Memorial University, St. John's, Newfoundland, Canada 
Ross E. Robertson, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada 

Analysis of the dependence on temperature of acid dissociation constants of weak acids in aqueous solution is 
considered from two standpoints. First, methods which assume a single-step reversible dissociation characterised 
by an acid dissociation constant K are examined with particular reference to the least-squares technique for deriving 
the required parameters. The importance is stressed of examining the structure of the model especially where high 
correlation factors are obtained between derived parameters. A method of analysis is proposed based on a 
polynomial in ( T  - 0) where 0 is a reference temperature. The results of applying this technique to several sets of 
data are discussed with comparison, where possible, with thermochemical data. Second, the data are examined 
using a two-stage equilibrium process for the dissociation. The temperature dependence of K can be satisfactorily 
described by the final equation which contains two enthalpy terms, characterising the two reversible stages. The 
derived parameters indicate that the dissociation proceeds through an ion-pair intermediate. 

FOR a single-stage chemical equilibrium in a closed system 
a t  fixed pressure, the van't Hoff equation relates the 
differential of the equilibrium constant, K with respect to 
temperature to the enthalpy change AHe [equation (l)]. 

d In K/dT = A H 0 / R T 2  

Here R is the gas constant. However, application of 
equation (1) to the analysis of experimental data 
comprising values of K a t  different temperatures is not 
straightforward. If it is assumed that AHe is indepen- 
dent of temperature, integration of equation (1) results in 
the familiar equation which requires that In K is a linear 
function of T-l, AHe being obtained from the slope. 
In many cases, this assumption is obviously unaccept- 
ab1e.l It follows therefore that either AH0 is dependent 
on temperature or the measured equilibrium constant 
describes more than a single-stage reversible process. 
If the latter possibility is ruled out, the analysis is still 
complicated by the fact that there is often no ' a priovi 
indication of the form taken by the dependence of AHe on 
temperature. A considerable literature describes how 
further progress can be made. Some methods pre- 
suppose a particular form for the dependence of AH* on 
temperature; a linear dependence requires that the heat 
capacity term, ACP0, is independent of temperature. 
Other methods fit the dependence of In K on temper- 
ature to an empirical equation, differentiation yielding 
AHe [equation (l)]. However, in both cases, the 
numerical analysis usually relies on the linear least- 
squares technique to obtain estimates of the required 
parameters. The present paper is concerned with the 
structure of the equations upon which the linear least- 
squares analysis is based and the impact that this 
structure has on estimates of the parameters. The 
outcome of our analysis prompted the development of 
two new methods for analysing the dependence on 
temperature of equilibrium constants. 

The first method assumes that AHe is dependent on 
temperature and uses a polynomial dependence of In K 
on (T - 0) where 0 is a reference temperature near the 

middle of the experimental range. The second method 
takes the view that the non-linear dependence of In K on 
T-l is observed because K is a function of equilibrium 
constants K, and K ,  describing two equilibria having a 
common intermediate. The separate dependencies of 
K, and K ,  on temperature are described by equation (1) 
using the related enthalpy terms, AHle and AH,e. 

The comments in this paper concerning the analysis of 
the dependence of K on T were prompted by our interest 
in the analysis of the dependence of rate constants on 
temperature for solvolytic reactions in water.3-6 
Granted therefore that we have established a basis for 
analysing the dependence of K on T, the same techniques 
can be used to analyse the dependence on temperature of 
KX, the pseudo-equilibrium quantity calculated from the 
rate constant using transition-state theory.6 

Linear Least-squares A naZysis.-The linear least-squares 
method 's8 yields values for specified parameters which 
minimise the sum of squares of the deviations between 
calculated and observed quantities. The standard error 
CT provides an indication of the quality of the data. 
The symmetric variance-covariance matrix 0 is cal- 
culated from G2 and the dispersion matrix. Normalising 
the matrix 0 yields the correlation matrix C. The di- 
agonal elements of C are unity and the off-diagonal 
elements are between -1 and +l.  These coefficients 
Cij (with i # j )  indicate the extent to which the esti- 
mates of the p-parameters are dependent. The inter- 
dependence between pi and PJ increases as C ij tends to 
&l. The variation in the C matrix with model can be 
used therefore as a basis for comment on the models 
themselves. 

Valentiner Equatioul.-The Valentiner equation (1) @*lo 

expresses the dependence of In K on T using three 
parameters ai, where i = 1-3. A closely related 

r\ 

In K = (a,/T) + a, In T + a3 

equation is that used by Harned and Robinson 11*12 
and by Robinson and Stokes,13 who replace the term In 
T by T to yield the Harned-Robinson equation. Equ- 
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ation (2) requires that AHe is a linear function of temper- 
ature, AGpe being equal to a2R. 

The experimental data for 16 systems have been fitted 
to equation (2). The systems include the dissociation 
constants for a range of carboxylic acids together with 
the self-dissociation constants for water l4 and deuterium 

TABLE 1 
Least squares analysis using Valentiner equation 

- 10-3a,/1~ 
Standard error 
-a2 
Standard error 
a3 
Standard error 
C i a  
c2s 

AHe(298 K)/kcal mo1-l 

AC,e/cal K-l niol-1 

c1 3 

Acetic acid 
5.507 
0.056 

18.65 
0.19 

113.8 
1.3 
0.9996 

-0.9999 
- 0.9997 

0.698 
rt0.250 
- 39.05 
f0.82 

Water 
14.337 
0.01 1 

25.36 
0.35 

160.3 
2.4 
0.9996 

- 0.9999 
-0.9997 

12.87 
$- 0.47 

-52.37 
-1 - 1.57 

D,O 
15.566 
0.015 

28.07 
0.51 

177.7 
3.4 
0.9998 

- 1 .0000 
- 0.9998 
13.71 

;C0.71 
-57.77 
f 2.38 

0 Limits on thermodynamic parameters calculated a t  the 
1 cal = 4.184 J. 05% confidence level. 

oxide.16 For example, the data for acetic acid1 com- 
prise 13 values of K A  over the range 273.15 < T < 
333.15 K. Equation (2) fits the data with a standard 
error in In K of 1.988 x The estimates of the 
coefficients are summarised in Table 1 together with 
derived values of AH* and ACpe a t  298 K. The details 
for the self-dissociation constants of water and deuterium 
oxide (molality scale) are also given in Table 1. The 
coefficients for a further 13 systems are summarised in 
Table 2. The optimism generated by the excellence of 
the fit afforded by equation (2) is soon dispelled when the 
correlation coefficients are examined. In the three 
examples quoted in Table 1, these coefficients are very 
close to  +1. The same pattern emerges for all systems 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

TABLE 2 
Valentiner parameters for various acids in aqueous 

solution 
Reference -10-4a, --a, a, 

Water 14 1.434 23.35 160.3 
Cyanoacetic 17 0.5431 19.71 124.82 
Acetic 1 0.5507 18.65 113.8 
[aH4]Acetic-D20 18 0.5803 18.99 115.4 
Deuterium oxide 15 1.557 28.07 177.7 
Formic 19 0.6215 20.91 131.3 
Di-isopropylcyanoacetic 20 0.2722 14.86 87.92 
[ZHJAcetic 16 0.5020 10.96 102.49 
Bromoacetic 21 0.5132 19.32 120.60 
Iodoacetic 21 0.4244 16.63 101.69 
Chloroacetic 21 0.6404 23.39 148.12 
Propionic 22 0.5434 18.54 112.62 
Butyric 23 0.4998 17.96 108.03 
Dimethylcyanoacetic 24 0.4545 18.43 114.67 
Isopropylcyanoacetic 24 0.3641 15.92 97.39 
Acetic-DaO 25 0.5933 19.45 118.49 

listed in Table 2 and indicates that the estimates of the 
ad parameters are perfectly correlated. Indeed these 
high coefficients throw doubts on the validity of equation 
(2) in describing the dependence of In K on T.  The 
situation is even more serious because the analysis can 
produce patterns of behaviour which are completely 

misleading. We are led to this conclusion by the 
patterns generated by the linear plots of a1 and of a3 
against a2 for the organic carboxylic acids listed in Table 
2. Thus not only are the parameters in equation (2) 
closely correlated between themselves for a given system 
(see Table l),  they are closely related within a series of 
chemically similar systems. Rather than indicating 
some underlying common feature, there is cause for 
concern that these patterns are artefacts of the analysis. 
A similar pattern of high correlation factors between 
derived coefficients is found when the equilibrium data 
are fitted to the Harned-Robinson equation.11,12 

A correlation between the estimates of two parameters 
approaches unity when these parameters attempt to 
account for the same underlying trend. At  ambient 
pressure, the properties of aqueous solutions can be 
measured within the ‘ window ’ given by 273.15 < T < 
373.15 K but the dependence of In T and T-l on T over 
this window is close to linear. This indicates that in 
equation (2) the two terms, one in T-l and one in In T ,  
can be replaced by a single term expressing a linear 
dependence of In K on T.26 Moreover as In ?’ increases 
over the window, T-l decreases and the third term a3 
[equation (211 affords a balance between the two contri- 
butions. Taken together, it is not unexpected that cI2 is 
close to unity and that ~ 2 3  and cI3 are large. I t  seems 
clear that the Valentiner equation is not a good starting 
point for the analysis of the dependence of In K on T ,  
despite recent claims for its adequacy.27 

Scott Eq.uatioue.-This treatment 28 assumes that 
AC,* is independent of temperature, AHe being a linear 
function of temperature. The analysis adopts a tech- 
nique first introduced by Harned and Embree.29 These 
authors related the dependence of K on temperature with 
reference to the maximum value, K,,, a t  temperature 
T,, [equation (3)]. 

(3) 
Here we use this approach in a slightly different 

context. We compare values of In K at  two temper- 
atures and assume that AHe(T) is a linear function of 

Consequently equation (1) can be integrated between 
temperatures T and 0 where the equilibrium constants 
are K ( T )  and K(0) ,  respectively [equation (4)]. 

R In K ( T )  = R In K(0)  + AHe(B)[$ - $1 + 

(T - e). 

ACpe[$, - 1 + (4) 

A link between equations (3) and (4) is readily estab- 
lished. If 0 is the temperature a t  which K is a maximum, 
then AHe (0) is zero and equation (4) simplifies to (5) 
where we have set ACpe equal to -40 cal mol-l K-1.29 

Thus if equations (3) and (15) are equivalent, the two 
temperature functions should be linearly related. 
Indeed over the window, 273.15 < T < 373.15 K, 
this is the case, yielding a value for f, 5.04 x 
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which agrees with the value suggested by Harned and 
Owen,12 2.6. 5 x lop5. 

Clarke-Glew Epatiort.-Clarke and Glew 30 expressed 
the dependence of AHe on temperature in terms of 
AHe(€)) at  the reference temperature 8 using a Taylor 
series expansion. If it is assumed that derivatives of 
ACpe with respect to temperature including d4ACpe/dT4 
and higher are zero and that all other derivatives are 
finite, the final expression for the dependence of K on T 
is equation (6). The first three terms on the right hand 

8-1 + I n  T d ACpe ( 8) 
“Pe[?- (e)l+ dT 

T - 8 - (T - 8)2 - o 111 T 
2T (K)] 4- dT2 

d2ACPe( 0) 

eT2 + 82T - 1102 - O3 In T - - - - -  
4 2  36 6 (c)] (‘)I 

side of equation (6) are identical with the first three 
terms of the Scott equation (4). In the limit T --t 8, 
both sides tend to R In K (8). The boundary condition 
is well defined, thereby contrasting the Clarke-Glew 
equation with, for example, the Valentiner equation. 
We disagree with the conclusions that these two equ- 
ations are similar 30 or eq~ivalent.~’ As written equ- 
ation (6) contains six unknowns. If only the first two 
terms are used, there is just one correlation coefficient 
to consider but as more terms are brought into the analy- 
sis, the number of coefficients increases rapidly, three 
coefficients with three parameters, six coefficients with 
four parameters, and ten coefficients with five para- 
meters. 

In an analysis of the data for the self dissociation of 
water, a t  the 95% confidence level, an F-test of the 
variance showed that an equation in four parameters 
is significant (Table 3). Accordingly at  the 95% level of 
confidence (t-distribution) , the enthalpy of dissociation 
at 208 K lies in the range 13.416-13.446 kcal mol-l and 
the heat capacity term in the range -52.7 to -50.9 
cal mol-l K-l. The correlation coefficients between 
these parameters, c23, is rather high, 0.4. Even more 
striking is the correlation coefficient between AHe 
and dACpe/dT terms where ~ 2 4  is -0.9. 

A similar pattern is observed in the correlation co- 
efficients for propionic acid, four terms being used in 
equation (6). For the data reported for formicl9 and 
acetic acids,l only three terms in equation (6) were 
statistically acceptable (Table 3) but in both cases the 
correlation coefficients between enthalpy and heat 
capacity terms are high, being ca. 0.73. 

The magnitude of the correlation function, rZ3, between 

enthalpy and heat capacity terms is disappointing in 
view of the importance of these quantities in treatments 
of acid dissociation. However the source of this high 
correlation is clear. Plots of the temperature functions 
for both terms against temperature, with 8 298.15 over 
the range 273.15 < T < 333.15, are essentially linear 
indicating that these terms are attempting to account 

TABLE 3 

Solute 
Parameter 

--In K 
Standard error 
A.HQ/cal mol-1 
Standard error 
AC,Q/cal 

mol-l K-1 
Standard error 

cal mol-l K-2 
Standard error 
(d2ACp*/dTa) / 

cal mol-l K-3 
Standard error 
(d3ACp*/dT3) / 

cal mol-l 
Standard error 
C i a  

C11 

c24 

c34 

(dAC*eldT) I 

‘1 3 

‘23 

Clarke-Glew equation. Calculated quantities at 298 K 

Water 
32.2445 
0.0005 
13.431 

7 
-51.8 - 

0.4 
0.368 

0.065 

Formic 
acid 

8.6394 
0.0008 

5.6 
41.6 

0.6 

- 38.7 

Acetic 
acid 

10.9502 
0.0005 
- 105.4 

3.3 
- 37.06 

0.37 

Propionic 
acid 

11.2234 
0.0005 

-200.8 
7.2 

- 37.76 

0.44 
0.242 

0.067 

-0,204 0.132 0.132 0.145 
-0.751 0.357 0.357 -0.381 

0.290 - 0.225 
0.398 -0.732 -0.732 0.727 

- 0.898 -0.911 
- 0.584 0.534 

for the same trend in the dependence of In  K on T .  
Indeed, these two terms in equation (6) could be re- 
placed by a single term, linear in temperature. These 
observations prompted development of the model now 
described. 

Polynomial Equation.-We express In I -  as a poly- 
nomial function in (T - 0)  [equation (7)]. In the limit, 

i = k  

T - 0, In K tends to b,. When 0 = 298.15 K, there are 
clear similarities between the dependence of T - 8 and 
(T - 8)3 on T and so we anticipate that ~ 2 3  will be large. 
Indeed correlation coefficients between terms involving 
every other power of T - 8 are expected to be significant. 
Equations (1) and (6) can be combined to yield expres- 
sions for the thermodynamic quantities. Thus for all 
terms up to the fifth power of T - 8, equations (8) and 
(9) are obtained for the enthalpy term. Further differ- 

AHe(T)/R = b2T2 -/- 2b3T2(T - 8) + 
3 h , ~ 2 ( ~  - el2 + 4 q ~  - q 3 7 - 2  + 

5b6(T - O)*T2 (8) 

AHQ(0) /R = b202 (9) 

entiation of equation (6) leads to expressions for ACpe 
and higher derivatives. 

The data for the systems given in Table 2 have been 
analyseci satisfactorily using the polynomial method 
(Table 6). In each case the series was terminated when 
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each parameter was significant a t  the 95% level of 
confidence according to the F-test of the variance ratio. 
In Figure 1 we show the change in the goodness of fit, 
A = [In K (obs) - In K (calc)] for the self dissociation 
constant of water l4 as each new term in the polynomial 
is added. With only two terms (k = 2), a plot of A 

TABLE 4 

Polynomial expression for dependence of In K on (T - 0) 

0 

lo8 (Standard error) 

lo6 (Standard error) 

lo6 (Standard error) 

107 (Standard error) 

lo9 (Standard error) 
AHe(O)/cal mol-1 
Standard error 
AC,e (8) /cal mol-l K-l 
Standard error 
[ d AC,e (8) /dT] /cal mol-1 K-2 
Standard error 
[d*AC,e(0)/dT2)/cal mol-l K-3 
Standard error 
[d3ACpe(8)/dT3)/cal mol-l K-4 
Standard error 
[d4AC,e(8)/dT4]/cal mol-l K-6 
Standard error 

bl  

102b, 

104b8 

107b, 

109b, 

Water 
PKW 

298.15 
- 32.24472 

0.561 
7.6006 

5.12 x 10 

3.213 

1.008 

3.976 
13.426 
9 

-51.14 
1.20 

4.168 x 10-l 
1.22 x 10-1 

-9.246 x 10-3 
1.908 x loW2 

4.66 x 10-4 

-3.9967 

19.38 

- 9.683 

-8.242 x 

-9.236 x lo-' 
3.79 x 10-6 

Propionic 
acid 

298.15 

4.83 
1.153 

38.54 

PKa 

- 11.2232 

- 1.0512 
1.340 
6.509 
0.6102 

- 203.7 
6.8 

0.5 
1.87 x 10-l 
0.71 x 10-1 
1.14 x lou2 
0.13 x lo-# 

8.73 x 

- 38.5 

9.31 x 10-5 

against T - 0 generates a parabola; when k = 3 the 
same plot shows a sinusoidal dependence. A scatter 
of A values both greater than and less than zero does not 
emerge until k = 5. The correlation coefficients (Table 

cal mol-l K-l. These values agree with those obtained 
by using the Clarke-Glew equation. The value of 
A&* (298.15 K) agrees with the thermochemical 
values 31p32 as does the increase in ACpe with increase in 
t e m p e r a t ~ r e . ~ l - ~ ~  Nonetheless, there is a small but 
significant difference (ca. 90 cal mol-l) in AHe (298.15 K) 
calculated from the dependence of pK, on temperature 
and from thermochemical data.14s3& 

The data for propionic acid 22 were fitted to the poly- 
nomial equation using four terms, the difference A 
showing reasonable scatter when plotted against T - 6. 
The derived parameters are summarised in Table 4. 

TABLE 5 
Correlation matrix using polynomial expression for 

dependence of In K on T - 6 
(a) Self-dissociation constant for water; 5 terms 
1 1 .oooo 
2 0.1577 1.0000 
3 -0.7138 -0.4525 1.0000 
4 -0.1796 -0.9180 0.5368 1.0000 
5 0.4858 0.6456 - 0.9059 - 0.7888 1 .OOOO 

1 1 .oooo 
2 -0.2336 1.0000 
3 -0.7396 0.4096 1.0000 

(b) Acid dissociation constant for propionic acid; 4 terms 

4 0.3789 -0.8780 -0.6831 1.0000 

The correlation coefficient c24 (Table 5 )  is again high. 
The enthalpy of dissociation calculated at  298.15 K from 
thermochemical data is -140 & 50 cal mol-l with AC,. 
-38 cal mol-l K-l. The agreement between these 
values and the estimates in Table 4 is noteworthy. 
Harned and Ehlers originally reported 22 AC,* -37.7 cal 
mol-l I(-l with AHe -168 cal mol-l. 

The results of a similar analysis for other dissociation 

TABLE 6 

Derived parameters for dependence of In K on T - 298.15 polynomial equation 
Acid 

Cyanoacetic l7 

Standard error 
Acetic 1 
Standard error 
[W,]Acetic-D,O 
Standard error 
D20 (self dissoc.) l6 

Standard error 
Formic 19 
Standard error 
Di-isopropylcyanoacetic 2o 

Standard error 
[2H,]Acetic l6 

Standard error 
Dimethylcyanoacetic 24 

Standard error 
Isopropylcyanoacetic 24 

Standard error 
Acetic-D,O 26 

Standard error 

bl 

3.03 x 10-4 
- 5.6869 

- 10.9502 
5.206 x 

- 12.26 

- 34.4353 

-8.6391 

5.72 x 10-4 

6.084 x lo-* 
9.094 x 

1.915 x 10-4 
-5.8852 

- 10.9862 
1.194 x lo-? 

.-5.5768 
4.2 x 10-4 

3.88 x 10-3 

5.579 x 10-4 

- 5.5177 

- 12.2316 

b2 
-5.045 x lop3 

4.061 X 

4.153 x 
1.742 x 
2.883 X 

6.858 x 
-2.280 x 

-1.926 x lo-, 

-5.561 x 10-4 

8.0812 X lo-, 

7.255 x 

2.562 x 10-5 
-2.303 x 10-4 

5.001 x 10-5 

2.157 x 10-5 

1.687 x 
2.789 x 

- 1.0587 x 

-1.236 x 10-2 
1.982 x 

b3 
---9.470 x 

1.369 x 
-1.035 x 

1.444 x 

2.120 x 10-6 
-4.352 x lov4 

2.539 x 

2.622 x 10-6 

-1.095 x 10-4 

-1.189 x 10-4 

-1.934 x 10-5 
8.635 x 10-7 

-9.500 x lo-' 
3.581 x 

--6.8411 x 
1.904 x lop6 

-4.727 x 
1.750 x 

2.051 x 
-1.120 x 10-4 

b, 
6.040 x 10-7 
1.272 x loW7 
3.858 x 10-7 
6.576 x 

2.018 x 
1.784 x 10-7 

1.149 x loA7 
3.206 x 10-7 
8.027 x 10-8 

5.337 x 10-7 

5 )  vary considerably; cI2 is small a t  0.16 but, as anti- 
cipated, cZ4 and c35 are close to 0,9. The calculated 
dependence of AC,* on temperature (Figure 3) shows an 
increase with increase in temperature. At the 95% chemical data.35*36 
confidence level, AHe (298 K) lies in the range 13 447- 
13 405 cal mol'l, and AC,e in the range -53.89 to -48.38 

constants are summarised in Table 6. The dependence 
of ACPe on temperature for three acids is shown in 
Figure 3 which includes a comparison with thermo- 

The close agreement between the results obtained 
using the Clarke-Glew equation and th,e polynomia 
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equation contradicts the claim 30 that an analysis based 
on a power series in temperature has little to commend 
it. In particular, we find that such a series can provide a 
realistic representation of the dependence of AH9 and 

dissociation of a weak acid, the overall process is repre- 
sented as shown in equation (10). At this stage, the 

K K ,  RCOOH & (RC0OH)int 
RCOO- + H+ (10) 

nature of the intermediate is left unspecified but we 
require that it is sufficiently long-lived to be character- 
ised by a set of thermodynamic parameters, e.g. partial 
molar enthalpy. Equation (10) defines two equilibrium 
constants; K,  describes the equilibrium between the 
undissociated acid RCOOH and the intermediate 
whereas K ,  describes the equilibrium between inter- 
mediate and free ions. We now assume that the 
observed equilibrium constant measures the proportion 
of acid in the form of free ions relative to that in the 
form of intermediate and undissociated acid. There- 

K = K2/(1 + K1-') (11) 
fore, K is related to K,  and K, by equation (11). In the 
limit K, > 1.0, K = K ,  and in the limit K ,  < 1.0, 

( b )  
0 I 0 0  

0.0800 c 0 
0 

0 

-0-0800t 0 

l o  

-0.16 
0 

1 I I I I I I 

- 30.0 - 6 . 0 0  18.0 42.0 

( T - 8 ) I K  

0 

0.00800 

0 
/ 

-30 1 / 
/ 

-0.008 O t  O 

0 
0 

/ 
/ 

/ 
/ 

/ 

0 

0 0  

0 

-0.16 I- 
I I I I I I I 

- 30-0 -6 .00 18.0 42 .0  

I T -  €I)/ K 
-40 

1 0  
/ 

c 
I 
Y 

T I 

0 

/ 

1 I I ' 
-30.0 -6  -00 18.00 42-0 

( T - 8 ) I H  

FIGURE 1 Polynomial equation: dependence of In K(obs.) - 
In K(ca1c.) on (T - 0) for the self-dissociation constant of 
water using an equation with (a) two, (b) three, and (c) five 
terms 

\ 
\ 

I 1 I I I I 

0 20 40 60 
(1 -  273.15)/K 

Polynomial equation : dependence of AC,e on temper- 
ature for the self-dissociation constant of water calculated 
using parameters in Table 4; comparison with calorimetric 
data 31932 (0) 

FIGURE 2 
ACPe on temperature. Neither do we agree that sup- 
pression of a term in In T is in any sense arbitrary. As 
noted above, the near linear dependence of In T on T is 
significant. 

Two-stage Modd.-In the analyses discussed above, it 
is assumed that the equilibrium constant describes a 
single-step reversible transformation. A different 
approach is to assume that the measured equilibrium 
constant describes a two-stage process. Thus for the 

K = K,K,. Thus at both extremes, it will not be 
possible to calculate the separate values of K ,  and K,. 
Between the two extremes, the dependence of K on 
temperature can be used to calculate K,  and I<,. This 
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assumes that the associated enthalpy terms AH,* and 
AH,e are such that the dependence of K on temperature 
is determined by the separate dependences of K,  and 
K, on temperature. We will further assume that AHle 
and AH,e are independent of temperature. If equations 
(12) and (13) apply, then equation (14) obtains. If a t  the 

K,  = A ,  exp ( - A H l e / R T )  
K ,  = A ,  exp ( - A H 2 e / R T )  
K = A ,  exp ( - A H Z e / R T )  

1 $- A-l exp ( A H l e / R T )  (14) 
reference temperature 8, the observed equilibrium 
constant is K(0)  then the ratio K/K(O) is given by 
equation (15). Equation (15) describes, therefore, the 

)I K = K(0)  exp [x, (T-l - 0-1 

dependence of K on ?’ about a reference K ( 8 )  at  8 in 
terms of three parameters ~ 1 - ~ 3 ,  where x3 is related to 
AHle and x1 to AH,e. This is the form used in the 
analysis reported here, but because the dependence of 
the variable K on the dependent variable T is non- 
linear in the xi parameters, the least squares technique is 
inappropriate. Consequently we used a method 37938 of 
seeking those coefficients which yield a minimum in the 
function [K(obs) - K(calc)] using estimates of the 
coefficients and gradients of the functions. It was 
found advantageous to identify one value of K as K(0) 
where 0 is near the middle of the experimental range. 
The analysis required initial estimates of the xi para- 
meters and some trial and error was required in each case 
(Table 7). Agreement between observed and calculated 
equilibrium constants was usually better than 0.2%. 
This is shown in Figure 4 where we have plotted A {= 
100 x [K(obs) - K(calc)/K(obs)]} against temperature 
for formic, acetic, and propionic acids. According to 
equation (15), the equilibrium constant K,,,,. is a t  a 
maximum when T = T,,,,., the latter being related to 
the xi parameters [equation (IS)]. The calculated 

values are 297.21, 296.64, and 292.93 K for formic, 
acetic, and propionic acids respectively. The agree- 
ment between these values and the observed T,,,. 
values provides a useful cross-check on the derived 
parameters. From the latter, the enthalpy quantities 
AH,* and AH,e are calculated together with K,  and K ,  at  
each temperature (Table 7). It is now possible to com- 
pare the separate dependences of K ,  K,, and K ,  on 
temperature (Figure 5). For example, the maximum in 
K for acetic acid is a consequence of the way in which 
K,  and K ,  change regularly with temperature. 

FIGURE 3 Polynomial equation: dependence of AC,e and stan- 
dard errors on temperature for (a) formic, (b) acetic, and (c) 
propionic acids ; comparison with thermochemical data (0) 3s 
and (v) ;33 thermochemical data calculated S5 assuming AC,e is 
independent of temperature indicated by arrow 
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FIGURE 4 Two-stage equilibrium : dependcncc of A { = 100 x 
[K(obs.) - K(calc.)]/K(obs.)) on temycraturc for (a) formic, 
(1)) acetic, and (c) propionic acids 

For all the systems shown in Table 7, the therrno- 
dynamic parameters show very similar behaviour. For 
the first stage in the dissociation, AGe is small being 
generally < + l . O  kcal mol-l. However, the process is 
exothermic with A H e  a t  ca. -5.0 kcal mol-l and, cor- 
respondingly, ASe is also negative. The changes in 
entlialpy and entropy quantities can be understood if the 
process involves charge separation with the production of 
H30+ ion in close proximity to the carboxylate ion. 
Thus the contribution of a more intense interaction of 
the solute species with solvent would result in an exo- 
thermic process. Subsequent separation of these ions 
would not involve significant changes in these inter- 
actions and indeed AHe for the second process is for most 
systems much smaller. Thus strong ion-ion inter- 
actions within this intermediate will be replaced by 
strong ion-solvent interactions for the individual ions. 
However, the second stage will be characterised by 
considerable re-organisation within the local solvent 
producing a negative ASe which, in turn, results in a 
positive value for AGe. 

Disczcssions.-The underlying problem in the analysis 
described above is that the data comprise a dependent 
variable K and one independent variable, temperature. 
By analysing the dependence of K on this single variable 
we endeavour to  calculate a number of quantities, e.g. 
AH*, ACPe, and dACPe/dT. It is not unexpected, 
therefore, that such a structure for the input data pro- 
duces estimates of parameters with high correlation 
coefficients. The latter will assume even greater 
significance if the structure of the model is poor, as in the 
case of the Valentiner equations. The numerical analysis 
is not helped by equation (1) which, in turn, prompts the 
fitting of In K rather than K on temperature. Con- 
sequently, the percentage change in In K is significantly 
less than in K. 

Another aspect to the analysis is the meaning of K 
itself, which is first and foremost an experimentally 
based quantity. The most precise methods for deter- 
mining K are based on methods for measuring the pro- 
portion of total solute present in solution as ions. Thus 
in the case of conductivity, it is assumed that the mobili- 
ties of these ions can be described using the same equ- 
ations describing mobilities of ions when the total solute 
is present as ions. By inference, we characterise the 
state of the non-conducting fraction of solute. In the 
analysis reported here we have used two approaches. 
For the most part we have assumed that the non- 
conducting fraction comprises one state, the undis- 
sociated acid, and that the system can be characterised 
by a single equilibrium constant. Consequently, there is 
assumed to exist a set of thermodynamic parameters 
which characterise the equilibrium. 

If the model adopted assumes a single-stage reversible 
process, there remains the question of the reliability of 
the thermodynamic parameters calculated using the 
various methods. We have endeavoured to show that of 
these the polynomial expression is satisfactory. I t  
does not, for example, assume a particular form for the 
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FIGURE 5 Two-stage equilibrium: comparison of the dependence on temperature of K ,  K , ,  and K ,  for (a) acetic and (b) propionic 
acids 

to programming for a computer. Nonetheless, the equation. We are less pessimistic (c j .  Figure 3) in view 
derived thermodynamic parameters should be compared, of the disagreement between values for ACp* and its 
where possible, with the same values from thermo- temperature dependence reported in different calori- 
chemical data. TiminiS9 has stressed this point al- metric studies. In addition, we have shown that the 
though his conclusions seem pessimistic. He suggests model adopted for the dependence of K on T is equally 
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TABLE 7 
Derived quantities characterising acid dissociation constants in water a t  298.15 K ; calculations based on two-stage equi- 

librium, A + B =+= C where C describes the ions, RCOO- and H,O+ 

Acid 
Cyanoacetic l7 

Acetic 1 
[2H4]Acetic-D20 18 
Formic lS 

Di-isopropylcyanoacetic 2o 

C2H3]Acetic l6 

Bromoacetic 21 
Iodoacetic a1 
Chloroacetic a1 
Propionic 
Dimethylcyanoacetic 24 

Isopropylcyanoacetic 24 

Acetic-D,O 26 

Kl 
0.965 
2.119 
2.232 
1.498 
0.7479 
1.291 
1.845 
1.388 
2.754 
1.089 
2.284 
0.2802 
0.6090 

A+B 
AGlel 

cal mol-1 
21.38 

- 444.9 
-475.9 
- 239.3 

172.0 
- 151.4 
- 262.6 
- 194.4 
- 600.2 
- 50.84 

-489.3 
753.9 

-1 070.4 

critical in view of the correlation coefficients between the 
estimates of their thermodynamic properties. 

Perhaps the most striking feature of the dependence of 
K on T for several carboxylic acids is the maximum in K.  
It is not immediately obvious what factors combine to 
produce this maximum. Heat capacity quantities in 
aqueous solutions are generally large and thus AHe is 
strongly temperature dependent. However, there seems 
relatively few explanations of why, for example, AH* 
a t  298 K for acetic acid is zero. Gurney40 suggested 
that a maximum in K was required by the electrostatic 
interactions but that the temperature a t  which K is 
maximum is determined by the non-electrostatic 
interactions, the latter being insensitive to the environ- 
ment and independent of temperature. However, Ives 
and Marsden 2o in their discussion of the role of the 
solvent medium, discussed the impact of differences in 
the thermodynamic properties of the water in the 
solute-cospheres. Leung and Grunwald 33 used a two- 
state model for the solvation of a solute in water to 
account for the magnitudes of ACPe in aqueous solution. 
There is a short step from the latter treatment to  the 
model which treats the dissociation as a two-stage 
process. The intermediate is identified as an ion-pair. 
Thus as suggested by Eigen,4l the first stage of the 
association process is an encounter as a preliminary step 
to the combination of the ions to form undissociated 
acid 42 [cf. equation (1) of reference 411. The suggestion 
is that the large AC,* values are artefacts of a two-stage 
process. A clear link is established here with the sug- 
gestion by Albery43 concerning the heat capacities of 
activation for solvolytic reactions in water which are 
artefacts of a two-stage process involving an intermediate 
ion-pair species. Indeed, the analysis reported here 
using the two-stage scheme prompts a reconsideration of 
the kinetic data for this class of  reaction^.^^^^ The 
outcome will form the basis of a further communication. 
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