Analysis of the Dependence of Acid Dissociation Constants on Temperature

By Michael J. Blandamer,* Department of Chemistry, The University, Leicester LE1 7RH John W. M. Scott, Department of Chemistry, Memorial University, St. John's, Newfoundland, Canada Ross E. Robertson, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada

Abstract

Analysis of the dependence on temperature of acid dissociation constants of weak acids in aqueous solution is considered from two standpoints. First, methods which assume a single-step reversible dissociation characterised by an acid dissociation constant K are examined with particular reference to the least-squares technique for deriving the required parameters. The importance is stressed of examining the structure of the model especially where high correlation factors are obtained between derived parameters. A method of analysis is proposed based on a polynomial in $(T-\theta)$ where θ is a reference temperature. The results of applying this technique to several sets of data are discussed with comparison, where possible, with thermochemical data. Second, the data are examined using a two-stage equilibrium process for the dissociation. The temperature dependence of K can be satisfactorily described by the final equation which contains two enthalpy terms, characterising the two reversible stages. The derived parameters indicate that the dissociation proceeds through an ion-pair intermediate.

For a single-stage chemical equilibrium in a closed system at fixed pressure, the van't Hoff equation relates the differential of the equilibrium constant, K with respect to temperature to the enthalpy change ΔH^{\ominus} [equation (1)].

$$
\begin{equation*}
\mathrm{d} \ln K / \mathrm{d} T=\Delta H^{\ominus} / R T^{2} \tag{1}
\end{equation*}
$$

Here R is the gas constant. However, application of equation (1) to the analysis of experimental data comprising values of K at different temperatures is not straightforward. If it is assumed that ΔH^{\ominus} is independent of temperature, integration of equation (1) results in the familiar equation which requires that $\ln K$ is a linear function of $T^{-1}, \Delta H^{\ominus}$ being obtained from the slope. In many cases, this assumption is obviously unacceptable. ${ }^{1}$ It follows therefore that either ΔH^{\ominus} is dependent on temperature or the measured equilibrium constant describes more than a single-stage reversible process. If the latter possibility is ruled out, the analysis is still complicated by the fact that there is often no ' a priori' indication of the form taken by the dependence of ΔH^{\ominus} on temperature. A considerable literature ${ }^{2}$ describes how further progress can be made. Some methods presuppose a particular form for the dependence of ΔH^{\ominus} on temperature; a linear dependence requires that the heat capacity term, $\Delta C_{\mathrm{p}}{ }^{ }$, is independent of temperature. Other methods fit the dependence of $\ln K$ on temperature to an empirical equation, differentiation yielding ΔH^{\ominus} [equation (1)]. However, in both cases, the numerical analysis usually relies on the linear leastsquares technique to obtain estimates of the required parameters. The present paper is concerned with the structure of the equations upon which the linear leastsquares analysis is based and the impact that this structure has on estimates of the parameters. The outcome of our analysis prompted the development of two new methods for analysing the dependence on temperature of equilibrium constants.

The first method assumes that ΔH^{\ominus} is dependent on temperature and uses a polynomial dependence of $\ln K$ on $(T-\theta)$ where θ is a reference temperature near the
middle of the experimental range. The second method takes the view that the non-linear dependence of $\ln K$ on T^{-1} is observed because K is a function of equilibrium constants K_{1} and K_{2} describing two equilibria having a common intermediate. The separate dependencies of K_{1} and K_{2} on temperature are described by equation (1) using the related enthalpy terms, $\Delta H_{1}{ }^{\ominus}$ and $\Delta H_{2}{ }^{\ominus}$.

The comments in this paper concerning the analysis of the dependence of K on T were prompted by our interest in the analysis of the dependence of rate constants on temperature for solvolytic reactions in water. ${ }^{3-5}$ Granted therefore that we have established a basis for analysing the dependence of K on T, the same techniques can be used to analyse the dependence on temperature of K^{\ddagger}, the pseudo-equilibrium quantity calculated from the rate constant using transition-state theory. ${ }^{6}$

Linear Least-squares Analysis.-The linear least-squares method ${ }^{7,8}$ yields values for specified parameters which minimise the sum of squares of the deviations between calculated and observed quantities. The standard error $\hat{\sigma}$ provides an indication of the quality of the data. The symmetric variance-covariance matrix θ is calculated from $\hat{\sigma}^{2}$ and the dispersion matrix. Normalising the matrix θ yields the correlation matrix C. The diagonal elements of C are unity and the off-diagonal elements are between $-\mathbf{l}$ and $+\mathbf{1}$. These coefficients $C_{i j}$ (with $i \neq j$) indicate the extent to which the estimates of the β-parameters are dependent. The interdependence between β_{i} and $\hat{\beta}_{j}$ increases as $C_{i j}$ tends to ± 1. The variation in the C matrix with model can be used therefore as a basis for comment on the models themselves.

Valentiner Equation.-The Valentiner equation (1) ${ }^{\text {8,10 }}$ expresses the dependence of $\ln K$ on T using three parameters a_{i}, where $i=1-3$. A closely related

$$
\begin{equation*}
\ln K=\left(a_{1} / T\right)+a_{2} \ln T+a_{3} \tag{2}
\end{equation*}
$$

equation is that used by Harned and Robinson ${ }^{\mathbf{1 1}, 12}$ and by Robinson and Stokes, ${ }^{13}$ who replace the term \ln T by T to yield the Harned-Robinson equation. Equ-
ation (2) requires that ΔH^{\ominus} is a linear function of temperature, $\Delta C_{\mathrm{p}}{ }^{\ominus}$ being equal to $a_{2} R$.

The experimental data for $\mathbf{1 6}$ systems have been fitted to equation (2). The systems include the dissociation constants for a range of carboxylic acids together with the self-dissociation constants for water ${ }^{14}$ and deuterium

Table 1
Least squares analysis using Valentiner equation

	Acetic acid	Water	$\mathrm{D}_{2} \mathrm{O}$
$-10^{-3} a_{1} / \mathrm{K}$	5.507	14.337	15.566
Standard error	0.056	0.011	0.015
$-a_{2}$	18.65	25.36	28.07
Standard error	0.19	0.35	0.51
a_{3}	113.8	160.3	177.7
Standard error	1.3	2.4	3.4
c_{12}	0.9996	0.9996	0.9998
c_{23}	-0.9999	-0.9999	- 1.0000
$c_{13}{ }^{\text {c }}$	-0.9997	-0.9997	-0.9998
$\Delta H^{\ominus}(298 \mathrm{~K}) / \mathrm{kcal} \mathrm{mol}^{-1}$	0.698	12.87	13.71
	$\pm 0.250{ }^{\circ}$	± 0.47	± 0.71
$\Delta C_{\mathrm{p}} \ominus / \mathrm{cal} \mathrm{K}{ }^{-1} \mathrm{~mol}^{-1}$	-39.05	-52.37	-57.77
	± 0.82	± 1.57	± 2.38

${ }^{a}$ Limits on thermodynamic parameters calculated at the 95% confidence level. $1 \mathrm{cal}=4.184 \mathrm{~J}$.
oxide. ${ }^{15}$ For example, the data for acetic acid ${ }^{1}$ comprise 13 values of K_{A} over the range $273.15 \leqslant T \leqslant$ 333.15 K . Equation (2) fits the data with a standard error in $\ln K$ of 1.988×10^{-8}. The estimates of the coefficients are summarised in Table 1 together with derived values of ΔH^{\ominus} and $\Delta C_{\mathrm{p}}{ }^{\ominus}$ at 298 K . The details for the self-dissociation constants of water and deuterium oxide (molality scale) are also given in Table 1. The coefficients for a further 13 systems are summarised in Table 2. The optimism generated by the excellence of the fit afforded by equation (2) is soon dispelled when the correlation coefficients are examined. In the three examples quoted in Table l, these coefficients are very close to ± 1. The same pattern emerges for all systems

Table 2

listed in Table 2 and indicates that the estimates of the a_{i} parameters are perfectly correlated. Indeed these high coefficients throw doubts on the validity of equation (2) in describing the dependence of $\ln K$ on T. The situation is even more serious because the analysis can produce patterns of behaviour which are completely
misleading. We are led to this conclusion by the patterns generated by the linear plots of a_{1} and of a_{3} against a_{2} for the organic carboxylic acids listed in Table 2. Thus not only are the parameters in equation (2) closely correlated between themselves for a given system (see Table 1), they are closely related within a series of chemically similar systems. Rather than indicating some underlying common feature, there is cause for concern that these patterns are artefacts of the analysis. A similar pattern of high correlation factors between derived coefficients is found when the equilibrium data are fitted to the Harned-Robinson equation. ${ }^{11,12}$

A correlation between the estimates of two parameters approaches unity when these parameters attempt to account for the same underlying trend. At ambient pressure, the properties of aqueous solutions can be measured within the ' window' given by $273.15 \leqslant T \leqslant$ 373.15 K but the dependence of $\ln T$ and T^{-1} on T over this window is close to linear. This indicates that in equation (2) the two terms, one in T^{-1} and one in $\ln T$, can be replaced by a single term expressing a linear dependence of $\ln K$ on $T .{ }^{26} \quad$ Moreover as $\ln T$ increases over the window, T^{-1} decreases and the third term a_{3} [equation (2)] affords a balance between the two contributions. Taken together, it is not unexpected that c_{12} is close to unity and that c_{23} and c_{13} are large. It seems clear that the Valentiner equation is not a good starting point for the analysis of the dependence of $\ln K$ on T, despite recent claims for its adequacy. ${ }^{27}$

Scott Equation.-This treatment ${ }^{28}$ assumes that $\Delta C_{\mathrm{p}}{ }^{\ominus}$ is independent of temperature, ΔH^{\ominus} being a linear function of temperature. The analysis adopts a technique first introduced by Harned and Embree. ${ }^{29}$ These authors related the dependence of K on temperature with reference to the maximum value, $K_{\text {max. }}$ at temperature $T_{\text {max. }}$ [equation (3)].

$$
\begin{equation*}
\log \left(K / K_{\max }\right)=-p\left(T-T_{\max .}\right)^{2} \tag{3}
\end{equation*}
$$

Here we use this approach in a slightly different context. We compare values of $\ln K$ at two temperatures and assume that $\Delta H^{\ominus}(T)$ is a linear function of $(T-\theta)$.

Consequently equation (l) can be integrated between temperatures T and θ where the equilibrium constants are $K(T)$ and $K(\theta)$, respectively [equation (4)].

$$
\begin{array}{r}
R \ln K(T)=R \ln K(\theta)+\Delta H^{\ominus}(\theta)\left[\frac{1}{\theta}-\frac{1}{T}\right]+ \\
\Delta C_{\mathrm{p}}^{\ominus}\left[\frac{\theta}{T}-1+\ln \left({ }^{T}\right)\right] \tag{4}
\end{array}
$$

A link between equations (3) and (4) is readily established. If θ is the temperature at which K is a maximum, then $\Delta H^{\ominus}(\theta)$ is zero and equation (4) simplifies to (5) where we have set $\Delta C_{\mathrm{p}}{ }^{\theta}$ equal to $-40 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1} .{ }^{29}$

$$
\begin{equation*}
\log \left(K / K_{\text {max }}\right)=8.74\left[\frac{T_{\max }}{T}-1+\ln \left(\frac{T}{T_{\text {max }} .}\right)\right] \tag{5}
\end{equation*}
$$

Thus if equations (3) and (15) are equivalent, the two temperature functions should be linearly related. Indeed over the window, $273.15 \leqslant T \leqslant 373.15 \mathrm{~K}$, this is the case, yielding a value for $p, 5.04 \times 10^{-5}$,
which agrees with the value suggested by Harned and Owen, ${ }^{18}$ i.e. 5×10^{-5}.

Clarke-Glew Equation.-Clarke and Glew ${ }^{30}$ expressed the dependence of ΔH^{\ominus} on temperature in terms of $\Delta H^{\ominus}(\theta)$ at the reference temperature θ using a Taylor series expansion. If it is assumed that derivatives of $\Delta C_{\mathrm{p}}{ }^{\theta}$ with respect to temperature including $\mathrm{d}^{4} \Delta C_{\mathrm{p}}{ }^{\ominus} / \mathrm{d} T^{4}$ and higher are zero and that all other derivatives are finite, the final expression for the dependence of K on T is equation (6). The first three terms on the right hand

$$
\begin{gather*}
R \ln K=R \ln K(\theta)+\Delta H^{\ominus}(\theta)\left[\frac{1}{\theta}-\frac{1}{T}\right]+ \\
\Delta C_{\mathrm{p}}{ }^{\ominus}\left[\frac{\theta}{T}-1+\ln \left(\frac{T}{\theta}\right)\right]+\frac{\mathrm{d} \Delta C_{\mathrm{p}}{ }^{\ominus}(\theta)}{\mathrm{d} T} \\
{\left[\begin{array}{c}
\left.T-\theta-\frac{(T-\theta)^{2}}{2 T}-\theta \ln \left(\frac{T}{\theta}\right)\right]+\frac{\mathrm{d}^{2} \Delta C_{\mathrm{p}}{ }^{\ominus}(\theta)}{\mathrm{d} T^{2}} \\
\\
{\left[\left(\frac{T^{2}-\theta^{2}}{4}\right)-\frac{(T-\theta)^{3}-(T-\theta)+}{6 T}\right.} \\
\left.\frac{\theta^{2}}{2} \ln \left(\frac{T}{\theta}\right)\right]+\frac{\mathrm{d}^{3} \Delta C_{\mathrm{p}}{ }^{\ominus}}{\mathrm{d} T^{3}}\left[\frac{T^{3}}{18}-\frac{(T-\theta)^{4}-}{24 \mathrm{~T}}\right. \\
\left.\frac{\theta T^{2}}{4}+\frac{\theta^{2} T}{2}-\frac{11 \theta^{2}}{36}-\frac{\theta^{3}}{6} \ln \left(\frac{T}{\theta}\right)\right]
\end{array}\right.}
\end{gather*}
$$

side of equation (6) are identical with the first three terms of the Scott equation (4). In the limit $T \longrightarrow \theta$, both sides tend to $R \ln K(\theta)$. The boundary condition is well defined, thereby contrasting the Clarke-Glew equation with, for example, the Valentiner equation. We disagree with the conclusions that these two equations are similar ${ }^{30}$ or equivalent. ${ }^{27}$ As written equation (6) contains six unknowns. If only the first two terms are used, there is just one correlation coefficient to consider but as more terms are brought into the analysis, the number of coefficients increases rapidly, three coefficients with three parameters, six coefficients with four parameters, and ten coefficients with five parameters.

In an analysis of the data for the self dissociation of water, at the 95% confidence level, an F-test of the variance showed that an equation in four parameters is significant (Table 3). Accordingly at the $\mathbf{9 5 \%}$ level of confidence (t-distribution), the enthalpy of dissociation at 298 K lies in the range $13.416-13.446 \mathrm{kcal} \mathrm{mol}^{-1}$ and the heat capacity term in the range -52.7 to -50.9 cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. The correlation coefficients between these parameters, c_{23}, is rather high, 0.4. Even more striking is the correlation coefficient between ΔH^{\ominus} and $\mathrm{d} \Delta C_{\mathrm{p}}{ }^{\ominus} / \mathrm{d} T$ terms where c_{24} is -0.9 .
A similar pattern is observed in the correlation coefficients for propionic acid, four terms being used in equation (6). For the data reported for formic ${ }^{19}$ and acetic acids, ${ }^{1}$ only three terms in equation (6) were statistically acceptable (Table 3) but in both cases the correlation coefficients between enthalpy and heat capacity terms are high, being ca. 0.73 .
The magnitude of the correlation function, c_{23}, between
enthalpy and heat capacity terms is disappointing in view of the importance of these quantities in treatments of acid dissociation. However the source of this high correlation is clear. Plots of the temperature functions for both terms against temperature, with $\theta 298.15$ over the range $273.15 \leqslant T \leqslant 333.15$, are essentially linear indicating that these terms are attempting to account

Table 3
Clarke-Glew equation. Calculated quantities at 298 K

Solute Parameter	Water	Formic acid	Acetic acid	Propionic acid
$-\ln K$	32.2445	8.6394	10.9502	11.2234
Standard error	0.0005	0.0008	0.0005	0.0005
$\Delta H^{\ominus} / \mathrm{cal} \mathrm{mol}^{-1}$	13.431	-38.7	-105.4	-200.8
Standard error	7	5.6	3.3	7.2
$\begin{aligned} & \Delta C_{\mathrm{p}} \theta / \mathrm{cal} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	-51.8	-41.6	-37.06	-37.76
Standard error	0.4	0.6	0.37	0.44
$\begin{aligned} & \left(\mathrm{d} \Delta C_{\mathrm{p}} \ominus / \mathrm{d} T\right) / \\ & \quad \mathrm{cal}^{2} \mathrm{~mol}^{-1} \mathrm{~K}^{-2} \end{aligned}$	0.368			0.242
Standard error $\left(\mathrm{d}^{2} \Delta C_{\mathrm{p}} \ominus / \mathrm{d} T^{2}\right) /$ cal $\mathrm{mol}^{-1} \mathrm{~K}^{-3}$	0.065			0.067
$\begin{aligned} & \text { Standard error } \\ & \left(\mathrm{d}^{3} \Delta C_{\mathrm{p}} \ominus / \mathrm{d} T^{3}\right) / \\ & \text { cal } \mathrm{mol}^{-1} \mathrm{~K}^{-4} \end{aligned}$				
Standard error				
c_{12}	-0.204	0.132	0.132	0.145
c_{13}	-0.751	0.357	0.357	-0.381
c_{14}	0.290			-0.225
c_{23}	0.398	-0.732	-0.732	0.727
c_{24}	-0.898			-0.911
c_{34}	-0.584			0.534

for the same trend in the dependence of $\ln K$ on T. Indeed, these two terms in equation (6) could be replaced by a single term, linear in temperature. These observations prompted development of the model now described.

Polynomial Equation.-We express $\ln K$ as a polynomial function in $(T-\theta)$ [equation (7)]. In the limit,

$$
\begin{equation*}
\ln K=\sum_{i=1}^{i=\sum_{1}^{k}}(T-\theta)^{i-1} \tag{7}
\end{equation*}
$$

$T \longrightarrow \theta, \ln K$ tends to b_{1}. When $\theta=298.15 \mathrm{~K}$, there are clear similarities between the dependence of $T-\theta$ and $(T-\theta)^{3}$ on T and so we anticipate that c_{23} will be large. Indeed correlation coefficients between terms involving every other power of $T-\theta$ are expected to be significant. Equations (1) and (6) can be combined to yield expressions for the thermodynamic quantities. Thus for all terms up to the fifth power of $T-\theta$, equations (8) and (9) are obtained for the enthalpy term. Further differ-

$$
\begin{gather*}
\Delta H^{\ominus}(T) / R=b_{2} T^{2}+2 b_{3} T^{2}(T-\theta)+ \\
3 b_{4} T^{2}(T-\theta)^{2}+4 b_{5}(T-\theta)^{3} T^{2}+ \\
5 b_{6}(T-\theta)^{4} T^{2} \tag{8}\\
\Delta H^{\ominus}(\theta) / R=b_{2} \theta^{2} \tag{9}
\end{gather*}
$$

entiation of equation (6) leads to expressions for $\Delta C_{p}{ }^{\circ}$ and higher derivatives.
The data for the systems given in Table 2 have been analysed satisfactorily using the polynomial method (Table 6). In each case the series was terminated when
each parameter was significant at the 95% level of confidence according to the F-test of the variance ratio. In Figure 1 we show the change in the goodness of fit, $\Delta=[\ln K$ (obs) $-\ln K$ (calc) $]$ for the self dissociation constant of water ${ }^{14}$ as each new term in the polynomial is added. With only two terms $(k=2)$, a plot of Δ

Table 4
Polynomial expression for dependence of $\ln K$ on $(T-\theta)$

	Water $\mathrm{p} K_{\mathrm{w}}$	Propionic acid $\mathrm{p} K_{\mathrm{a}}$
θ	298.15	298.15
b_{1}	-32.24472	-11.2232
10^{3} (Standard error)	0.561	4.83
$10^{2} b_{2}$	7.6006	1.153
10^{5} (Standard error)	5.12×10	38.54
$10^{4} b_{3}$	-3.9967	-1.0512
10^{6} (Standard error)	3.213	1.340
$10^{7} b_{4}$	19.38	6.509
10^{7} (Standard error)	1.008	0.6102
$10^{9} b_{5}$	-9.683	
10^{9} (Standard error)	3.976	
$\Delta H^{\ominus}(\theta) / \mathrm{cal} \mathrm{mol}^{-1}$	13.426	-203.7
Standard error	9	6.8
$\Delta C_{p}{ }^{\ominus}(\theta) / \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	-51.14	-38.5
Standard error	1.20	0.5
$\left[\mathrm{d} \Delta C_{\mathrm{p}}{ }^{\ominus}(\theta) / \mathrm{d} T\right] / \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-2}$	4.168×10^{-1}	1.87×10^{-1}
Standard error	1.22×10^{-1}	0.71×10^{-1}
$\left[\mathrm{d}^{2} \Delta C_{\mathrm{p}}{ }^{\ominus}(\theta) / \mathrm{d} T^{2}\right) / \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-3}$	-9.246×10^{-3}	1.14×10^{-2}
Standard error	1.908×10^{-2}	0.13×10^{-2}
$\left[\mathrm{d}^{3} \Delta C_{\mathrm{p}}{ }^{\ominus}(\theta) / \mathrm{d} T^{3}\right) / \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-4}$	-8.242×10^{-4}	9.31×10^{-5}
Standard error	4.66×10^{-4}	8.73×10^{-6}
$\left[\mathrm{d}^{4} \Delta C_{\mathrm{D}}{ }^{\ominus}(\theta) / \mathrm{dT}^{\mathbf{4}}\right] / \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-5}$	-9.236×10^{-6}	
Standard error	3.79×10^{-6}	

against $T-\theta$ generates a parabola; when $k=\mathbf{3}$ the same plot shows a sinusoidal dependence. A scatter of Δ values both greater than and less than zero does not emerge until $k=\mathbf{5}$. The correlation coefficients (Table
cal $\mathrm{mol}^{\mathbf{- 1}} \mathrm{K}^{\mathbf{- 1}}$. These values agree with those obtained by using the Clarke-Glew equation. The value of $\Delta C_{\mathrm{p}}{ }^{\ominus}(298.15 \mathrm{~K})$ agrees with the thermochemical values ${ }^{31,32}$ as does the increase in $\Delta C_{\mathrm{p}}{ }^{\ominus}$ with increase in temperature. ${ }^{31-33}$ Nonetheless, there is a small but significant difference (ca. $90 \mathrm{cal} \mathrm{mol}^{-1}$) in $\Delta H^{\ominus}(298.15 \mathrm{~K})$ calculated from the dependence of $\mathrm{p} K_{\mathrm{w}}$ on temperature and from thermochemical data. ${ }^{14,34}$

The data for propionic acid ${ }^{22}$ were fitted to the polynomial equation using four terms, the difference Δ showing reasonable scatter when plotted against $T-\theta$. The derived parameters are summarised in Table 4.

Table 5
Correlation matrix using polynomial expression for dependence of $\ln K$ on $T-\theta$
(a) Self-dissociation constant for water; 5 terms

1	1.0000			
2	0.1577	1.0000		
3	-0.7138	-0.4525	1.0000	
4	-0.1796	-0.9180	0.5368	1.0000
5	0.4858	0.0456	0.9059	0.7888

(b) Acid dissociation constant for propionic acid; 4 terms
$1 \quad 1.0000$

2	-0.2336	1.0000		
3	-0.7396	0.4095	1.0000	
4	0.3789	-0.8780	-0.6831	1.0000

The correlation coefficient c_{24} (Table 5) is again high. The enthalpy of dissociation calculated at 298.15 K from thermochemical data is $-140 \pm 50 \mathrm{cal} \mathrm{mol}^{-1}$ with $\Delta C_{\mathrm{p}}{ }^{\ominus}$ $-38 \mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$. The agreement between these values and the estimates in Table 4 is noteworthy. Harned and Ehlers originally reported ${ }^{22} \Delta C_{\mathrm{p}}{ }^{\ominus}-37.7 \mathrm{cal}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ with $\Delta H^{\ominus}-168 \mathrm{cal} \mathrm{mol}^{-1}$.

The results of a similar analysis for other dissociation

Table 6
Derived parameters for dependence of $\ln K$ on $T-298.15$ polynomial equation

Acid	b_{1}	b_{2}	b_{3}	b_{4}
Cyanoacetic ${ }^{17}$	-5.6869	-5.045×10^{-3}	-9.470×10^{-5}	6.040×10^{-7}
Standard error	3.03×10^{-4}	4.061×10^{-5}	1.369×10^{-6}	1.272×10^{-7}
Acetic ${ }^{1}$	-10.9502	-5.561×10^{-4}	-1.035×10^{-4}	3.853×10^{-7}
Standard error	5.206×10^{-3}	4.153×10^{-5}	1.444×10^{-6}	6.576×10^{-8}
[${ }^{2} \mathrm{H}_{4}$]Acetic- $\mathrm{D}_{2} \mathrm{O}{ }^{18}$	-12.26	1.742×10^{-2}	-1.095×10^{-4}	
Standard error	5.72×10^{-4}	2.883×10^{-5}	2.120×10^{-6}	
$\mathrm{D}_{2} \mathrm{O}$ (self dissoc.) ${ }^{15}$	-34.4353	8.0812×10^{-2}	-4.352×10^{-4}	2.018×10^{-6}
Standard error	6.084×10^{-4}	6.858×10^{-5}	2.539×10^{-6}	1.784×10^{-7}
Formic ${ }^{19}$	-8.6391	-2.280×10^{-4}	-1.189×10^{-4}	5.337×10^{-7}
Standard error	9.094×10^{-4}	7.255×10^{-5}	2.522×10^{-6}	1.149×10^{-7}
Di-isopropylcyanoacetic ${ }^{20}$	-5.8852	-1.926×10^{-2}	-1.934×10^{-5}	3.206×10^{-7}
Standard error	1.915×10^{-4}	2.562×10^{-5}	8.635×10^{-7}	8.027×10^{-8}
[${ }^{2} \mathrm{H}_{3}$]Acetic ${ }^{16}$	-10.9862	-2.303×10^{-4}	-9.500×10^{-5}	
Standard error	1.194×10^{-2}	5.001×10^{-5}	3.581×10^{-6}	
Dimethylcyanoacetic ${ }^{24}$	-5.5768	-1.0587×10^{-2}	-6.8411×10^{-5}	
Standard error	4.2×10^{-4}	2.157×10^{-5}	1.904×10^{-6}	
Isopropylcyanoacetic ${ }^{24}$	-5.5177	-1.235×10^{-2}	-4.727×10^{-5}	
Standard error	3.88×10^{-3}	1.982×10^{-4}	1.750×10^{-5}	
Acetic- $\mathrm{D}_{2} \mathrm{O}^{25}$	-12.2316	1.687×10^{-3}	-1.120×10^{-4}	
Standard error	5.579×10^{-4}	2.789×10^{-4}	2.051×10^{-8}	

5) vary considerably; c_{12} is small at 0.16 but, as anticipated, c_{24} and c_{35} are close to 0.9. The calculated dependence of $\Delta C_{\mathrm{p}}{ }^{\ominus}$ on temperature (Figure 3) shows an increase with increase in temperature. At the 95% confidence level, ΔH^{\ominus} (298 K) lies in the range $13447-$ $13405 \mathrm{cal} \mathrm{mol}^{-1}$, and $\Delta C_{\mathrm{p}}{ }^{\ominus}$ in the range -53.89 to -48.38
constants are summarised in Table 6. The dependence of $\Delta C_{\mathrm{p}}{ }^{\ominus}$ on temperature for three acids is shown in Figure 3 which includes a comparison with thermochemical data ${ }^{35,36}$

The close agreement between the results obtained using the Clarke-Glew equation and the polynomia
equation contradicts the claim ${ }^{30}$ that an analysis based on a power series in temperature has little to commend it. In particular, we find that such a series can provide a realistic representation of the dependence of ΔH^{\ominus} and

Figure 1 Polynomial equation: dependence of $\ln K$ (obs.) $\ln K$ (calc.) on $(T-\theta)$ for the self-dissociation constant of water using an equation with (a) two, (b) three, and (c) five terms
$\Delta C_{\mathrm{p}}{ }^{\theta}$ on temperature. Neither do we agree that suppression of a term in $\ln T$ is in any sense arbitrary. As noted above, the near linear dependence of $\ln T$ on T is significant.

Two-stage Model.-In the analyses discussed above, it is assumed that the equilibrium constant describes a single-step reversible transformation. A different approach is to assume that the measured equilibrium constant describes a two-stage process. Thus for the
dissociation of a weak acid, the overall process is represented as shown in equation (10). At this stage, the

$$
\begin{equation*}
\mathrm{RCOOH} \xlongequal{\stackrel{K_{1}}{\rightleftharpoons}}(\mathrm{RCOOH})_{\text {int }} \stackrel{K_{\mathrm{g}}}{\mathrm{RCOO}^{-}+\mathrm{H}^{+}} \tag{10}
\end{equation*}
$$

nature of the intermediate is left unspecified but we require that it is sufficiently long-lived to be characterised by a set of thermodynamic parameters, e.g. partial molar enthalpy. Equation (10) defines two equilibrium constants; K_{1} describes the equilibrium between the undissociated acid RCOOH and the intermediate whereas K_{2} describes the equilibrium between intermediate and free ions. We now assume that the observed equilibrium constant measures the proportion of acid in the form of free ions relative to that in the form of intermediate and undissociated acid. There-

$$
\begin{equation*}
K=K_{2} /\left(1+K_{1}^{-1}\right) \tag{11}
\end{equation*}
$$

fore, K is related to K_{1} and K_{2} by equation (11). In the limit $K_{1} \gg 1.0, K=K_{2}$ and in the limit $K_{1} \ll 1.0$,

Figure 2 Polynomial equation: dependence of $\Delta C_{p} \theta$ on temperature for the self-dissociation constant of water calculated using parameters in Table 4; comparison with calorimetric data ${ }^{31,32}$ (\square)
$K=K_{1} K_{2}$. Thus at both extremes, it will not be possible to calculate the separate values of K_{1} and K_{2}. Between the two extremes, the dependence of K on temperature can be used to calculate K_{1} and K_{2}. This

assumes that the associated enthalpy terms $\Delta H_{1}{ }^{\ominus}$ and $\Delta H_{2}{ }^{\ominus}$ are such that the dependence of K on temperature is determined by the separate dependences of K_{1} and K_{2} on temperature. We will further assume that $\Delta H_{1}{ }^{\ominus}$ and $\Delta H_{2}{ }^{\circ}$ are independent of temperature. If equations (12) and (13) apply, then equation (14) obtains. If at the

$$
\begin{align*}
& K_{1}=A_{1} \exp \left(-\Delta H_{1}^{\ominus} / R T\right) \tag{12}\\
& K_{2}=A_{2} \exp \left(-\Delta H_{2}^{\ominus} / R T\right) \tag{13}\\
& K=\frac{A_{2} \exp \left(-\Delta H_{2}^{\ominus} / R T\right)}{1+A^{-1} \exp \left(\Delta H_{1}{ }^{\ominus} / R T\right)} \tag{14}
\end{align*}
$$

reference temperature θ, the observed equilibrium constant is $K(\theta)$ then the ratio $K / K(\theta)$ is given by equation (15). Equation (15) describes, therefore, the

$$
\begin{align*}
& K=K(\theta) \exp \left[x_{1}\left(T^{-1}-\theta^{-1}\right)\right] \\
& \qquad\left[\frac{1+x_{2} \exp \left(x_{3} / \theta\right)}{1+x_{2} \exp \left(x_{3} / T\right)}\right] \tag{15}
\end{align*}
$$

dependence of K on T about a reference $K(\theta)$ at θ in terms of three parameters $x_{1}-x_{3}$, where x_{3} is related to $\Delta H_{1}{ }^{\ominus}$ and x_{1} to $\Delta H_{2}{ }^{\ominus}$. This is the form used in the analysis reported here, but because the dependence of the variable K on the dependent variable T is nonlinear in the x_{i} parameters, the least squares technique is inappropriate. Consequently we used a method ${ }^{37,38}$ of seeking those coefficients which yield a minimum in the function $[K(\mathrm{obs})-K(\text { calc })]^{2}$ using estimates of the coefficients and gradients of the functions. It was found advantageous to identify one value of K as $K(\theta)$ where θ is near the middle of the experimental range. The analysis required initial estimates of the x_{i} parameters and some trial and error was required in each case (Table 7). Agreement between observed and calculated equilibrium constants was usually better than 0.2%. This is shown in Figure 4 where we have plotted $\Delta\{=$ $100 \times[K$ (obs) $-K$ (calc) $/ K$ (obs) $]\}$ against temperature for formic, acetic, and propionic acids. According to equation (15), the equilibrium constant $K_{\text {max. }}$ is at a maximum when $T=T_{\text {max }}$, the latter being related to the x_{i} parameters [equation (16)]. The calculated

$$
\begin{equation*}
T_{\max .}=x_{3} / \ln \left\{x_{1} /\left[x_{2}\left(x_{3}-x_{1}\right)\right]\right\} \tag{16}
\end{equation*}
$$

values are $297.21,295.64$, and 292.93 K for formic, acetic, and propionic acids respectively. The agreement between these values and the observed $T_{\text {max. }}$ values provides a useful cross-check on the derived parameters. From the latter, the enthalpy quantities $\Delta H_{1}{ }^{\ominus}$ and $\Delta H_{2}{ }^{\ominus}$ are calculated together with K_{1} and K_{2} at each temperature (Table 7). It is now possible to compare the separate dependences of K, K_{1}, and K_{2} on temperature (Figure 5). For example, the maximum in K for acetic acid is a consequence of the way in which K_{1} and K_{2} change regularly with temperature.

[^0]

(c)

Figure 4 Two-stage equilibrium: dependence of $\Delta\{=100 \times$ [K (obs.) $-K$ (calc.) $] / K$ (obs.)) on temperature for (a) formic, (b) acetic, and (c) propionic acids

For all the systems shown in Table 7, the thermodynamic parameters show very similar behaviour. For the first stage in the dissociation, ΔG^{\ominus} is small being generally $< \pm 1.0 \mathrm{kcal} \mathrm{mol}^{-1}$. However, the process is exothermic with ΔH^{\ominus} at $c a .-5.0 \mathrm{kcal} \mathrm{mol}^{-1}$ and, correspondingly, ΔS^{\ominus} is also negative. The changes in enthalpy and entropy quantities can be understood if the process involves charge separation with the production of $\mathrm{H}_{3} \mathrm{O}^{+}$ion in close proximity to the carboxylate ion. Thus the contribution of a more intense interaction of the solute species with solvent would result in an exothermic process. Subsequent separation of these ions would not involve significant changes in these interactions and indeed ΔH^{\ominus} for the second process is for most systems much smaller. Thus strong ion-ion interactions within this intermediate will be replaced by strong ion-solvent interactions for the individual ions. However, the second stage will be characterised by considerable re-organisation within the local solvent producing a negative ΔS^{\ominus} which, in turn, results in a positive value for ΔG^{\ominus}.

Discussions.-The underlying problem in the analysis described above is that the data comprise a dependent variable K and one independent variable, temperature. By analysing the dependence of K on this single variable we endeavour to calculate a number of quantities, e.g. $\Delta H^{\ominus}, \Delta C_{\mathrm{p}}{ }^{\ominus}$, and $\mathrm{d} \Delta C_{\mathrm{p}}{ }^{\ominus} / \mathrm{d} T$. It is not unexpected, therefore, that such a structure for the input data produces estimates of parameters with high correlation coefficients. The latter will assume even greater significance if the structure of the model is poor, as in the case of the Valentiner equations. The numerical analysis is not helped by equation (1) which, in turn, prompts the fitting of $\ln K$ rather than K on temperature. Consequently, the percentage change in $\ln K$ is significantly less than in K.

Another aspect to the analysis is the meaning of K itself, which is first and foremost an experimentally based quantity. The most precise methods for determining K are based on methods for measuring the proportion of total solute present in solution as ions. Thus in the case of conductivity, it is assumed that the mobilities of these ions can be described using the same equations describing mobilities of ions when the total solute is present as ions. By inference, we characterise the state of the non-conducting fraction of solute. In the analysis reported here we have used two approaches. For the most part we have assumed that the nonconducting fraction comprises one state, the undissociated acid, and that the system can be characterised by a single equilibrium constant. Consequently, there is assumed to exist a set of thermodynamic parameters which characterise the equilibrium.

If the model adopted assumes a single-stage reversible process, there remains the question of the reliability of the thermodynamic parameters calculated using the various methods. We have endeavoured to show that of these the polynomial expression is satisfactory. It does not, for example, assume a particular form for the
dependence of ΔH^{\ominus} on temperature as is the case for the Scott and Clarke-Glew equations. Indeed the derived quantities are in agreement although the calculations in the case of the polynomial expression are more amenable

that analysis of dissociation constant-temperature trends is not capable of yielding reliable $\Delta C_{\mathrm{p}}{ }^{\ominus}$ values. His conclusions are based on the comparison of thermochemical data ${ }^{38}$ and the application of the Clarke-Glew
(b)

Figure 5 Two-stage equilibrium: comparison of the dependence on temperature of K, K_{1}, and K_{2} for (a) acetic and (b) propionic acids
to programming for a computer. Nonetheless, the derived thermodynamic parameters should be compared, where possible, with the same values from thermochemical data. Timini ${ }^{39}$ has stressed this point although his conclusions seem pessimistic. He suggests
equation. We are less pessimistic (cf. Figure 3) in view of the disagreement between values for $\Delta C_{\mathrm{p}}{ }^{\ominus}$ and its temperature dependence reported in different calorimetric studies. In addition, we have shown that the model adopted for the dependence of K on T is equally

Table 7
Derived quantities characterising acid dissociation constants in water at 298.15 K ; calculations based on two-stage equilibrium, $\mathrm{A} \rightleftharpoons \mathrm{B} \rightleftharpoons \mathrm{C}$ where C describes the ions, RCOO - and $\mathrm{H}_{3} \mathrm{O}^{+}$

	$A \rightleftharpoons B$	
Acid	K_{1}	$\Delta G_{1} \oplus$ cal mol^{-1}
Cyanoacetic ${ }^{17}$	0.965	21.38
Acetic ${ }^{1}$	2.119	-444.9
$\left[{ }^{2} \mathrm{H}_{4}\right]$ Acetic-D ${ }_{2} \mathrm{O}{ }^{18}$	2.232	-475.9
Formic ${ }^{19}$	1.498	-239.3
Di-isopropylcyanoacetic ${ }^{20}$	0.7479	172.0
$\left[{ }^{2} \mathrm{H}_{3}\right]$ Acetic ${ }^{16}$	1.291	-151.4
Bromoacetic ${ }^{21}$	1.845	-262.6
Iodoacetic ${ }^{21}$	1.388	-194.4
Chloroacetic ${ }^{21}$	2.754	-600.2
Propionic ${ }^{22}$	1.089	-50.84
Dimethylcyanoacetic ${ }^{24}$	2.284	-489.3
Isopropylcyanoacetic ${ }^{24}$	0.2802	753.9
Acetic- $\mathrm{D}_{2} \mathrm{O}{ }^{25}$	0.6090	-1070.4

critical in view of the correlation coefficients between the estimates of their thermodynamic properties.

Perhaps the most striking feature of the dependence of K on T for several carboxylic acids is the maximum in K. It is not immediately obvious what factors combine to produce this maximum. Heat capacity quantities in aqueous solutions are generally large and thus ΔH^{\ominus} is strongly temperature dependent. However, there seems relatively few explanations of why, for example, ΔH^{\ominus} at 298 K for acetic acid is zero. Gurney ${ }^{40}$ suggested that a maximum in K was required by the electrostatic interactions but that the temperature at which K is maximum is determined by the non-electrostatic interactions, the latter being insensitive to the environment and independent of temperature. However, Ives and Marsden ${ }^{20}$ in their discussion of the role of the solvent medium, discussed the impact of differences in the thermodynamic properties of the water in the solute-cospheres. Leung and Grunwald ${ }^{33}$ used a twostate model for the solvation of a solute in water to account for the magnitudes of $\Delta C_{\mathrm{p}}{ }^{\ominus}$ in aqueous solution. There is a short step from the latter treatment to the model which treats the dissociation as a two-stage process. The intermediate is identified as an ion-pair. Thus as suggested by Eigen, ${ }^{41}$ the first stage of the association process is an encounter as a preliminary step to the combination of the ions to form undissociated acid ${ }^{42}$ [cf. equation (1) of reference 41]. The suggestion is that the large $\Delta C_{\mathrm{p}}{ }^{\ominus}$ values are artefacts of a two-stage process. A clear link is established here with the suggestion by Albery ${ }^{43}$ concerning the heat capacities of activation for solvolytic reactions in water which are artefacts of a two-stage process involving an intermediate ion-pair species. Indeed, the analysis reported here using the two-stage scheme prompts a reconsideration of the kinetic data for this class of reactions. ${ }^{3,44}$ The outcome will form the basis of a further communication.
[0/724 Received, 16th May, 1980]

REFERENCES

${ }^{1}$ H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc., 1933, 55, 652.
${ }^{2}$ See for example, E. J. King 'Acid-Base Equilibria,' Academic Press, New York, 1965, ch. 8.

$\mathrm{B} \rightleftharpoons \mathrm{C}$	
$\Delta G_{2}{ }^{\ominus} /$	$\Delta H_{2}{ }^{\text {el }}$
$\mathrm{kcal} \mathrm{mol}^{-1}$	kcal mol ${ }^{-1}$
2.948	1.800
6.259	1.668
7.045	2.061
4.815	2.226
2.984	-0.781
6.169	2.098
3.665	0.712
4.010	0.648
3.729	0.535
6.264	2.298
3.089	-0.190
2.363	2.978
7.158	1.325

${ }^{3}$ R. E. Robertson, Prog. Phys. Org. Chem., 1967, 4, 213.
4 M. J. Blandamer, J. M. W. Scott, and R. E. Robertson, Can. J. Chem., 1980, 58, 772.
${ }^{5}$ M. J. Blandamer, J. M. W. Scott, R. E. Robertson, and A. Vrielink, J. Am. Chem. Soc., 1980, 102, 2585.
${ }_{8}$ S. Glasstone, K. J. Laidler, and H. Eyring, ' The Theory of Rate Processes,' McGraw-Hill, New York, 1941.
${ }^{7}$ C. A. Bennett and N. L. Franklin,' Statistical Analysis in Chemistry and the Chemical Industry,' Wiley, New York, 1954. ${ }^{8}$ W. J. Dixon and F. J. Massey, ' Introduction to Statistical Analysis,' McGraw-Hill, New York, 1957.
${ }^{9}$ S. Valentiner, Z. Phys. Chem., 1907, 42, 253.
${ }^{10}$ D. H. Everett and W. F. K. Wynne-Jones, Trans. Faraday Soc., 1939, 35, 1350.
${ }^{11}$ H. S. Harned and R. A. Robinson, Trans. Faraday Soc., 1940, 36, 973.
${ }_{12}$ H. S. Harned and B. B. Owen, ' The Physical Chemistry of Electrolyte Solutions,' Reinhold, New York, 1943, ch. 15.
${ }^{13}$ R. A. Robinson and R. H. Stokes, ' Electrolyte Solutions,' Butterworths, London, 2nd edn. (revised), 1959, appendix 12.1.
${ }_{14}$ A. K. Covington, M. I. A. Ferra, and R. A. Robinson, J. Chem. Soc., Faraday Trans. 1, 1977, 1721.
${ }^{15}$ A. K. Covington, R. A. Robinson, and R. G. Bates, J. Phys. Chem., 1966 70, 3820.
${ }_{16}$ M. Paabo R. G. Bates, and R. A. Robinson, J. Phys. Chem., 1966, 70, 540.
${ }_{17}$ F. S. Feates and D. J. G. Ives, J. Chem. Soc., 1956, 2798.
${ }^{18}$ M. Paabo, R. G. Bates, and R. A. Robinson, J. Phys. Chem., 1966, 70, 2073.
${ }_{19}$ H. S. Harned and N. D. Embree, J. Am. Chem. Soc., 1934, 56, 1042.
${ }_{21}$ D. J. G. Ives and P. D. Marsden, J. Chem. Soc., 1965, 649.
${ }_{21}$ D. J. G. Ives and J. H. Pryor, J. Chem. Soc., 1955, 2104.
${ }^{22}$ H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc., 1933, 55, 2379.
${ }^{23}$ D. H. Everett, D. A. Landsman, and B. R. W. Pinsent, Proc. R. Soc. London, Ser. A, 1952, 215, 409.
${ }^{24}$ D. J. G. Ives and P. G. N. Moseley, J. Chem. Soc. B, 1970, 1655.
${ }_{25}$ R. Gary, R. G. Bates, and R. A. Robinson, J. Phys. Chem., 1966, 70, 2750.
${ }^{26}$ R. Gaboriaud, Bull. Soc. Chim. Fr., 1971, 1605.
27 R. W. Rametta, J. Chem. Educ., 1977, 54, 280.
${ }^{28}$ M. J. Blandamer, J. M. W. Scott, and R. E. Robertson, in preparation.
${ }_{29}$ H. S. Harned and W. D. Embree, J. Am. Chem. Soc., 1934, 56, 1050.
${ }^{30}$ E. C. W. Clarke and D. N. Glew, Trans. Faraday Soc., 1966, 62, 539.
${ }_{31}$ P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler, Can. J. Chem., 1976, 54, 3315.
${ }_{32}$ G. Olofsson and I. Olofsson, J. Chem. Thermodyn., 1977, $8,65$.
${ }^{33}$ C. S. Leung and E. Grunwald, J. Phys. Chem., 1970, 74, 687.
${ }^{34}$ L. G. Hepler and E. M. Woolley, ' Water-a Comprehensive Treatise,' ed. F. Franks, Plenum, New York, 1973, vol. 3, ch. 3.
${ }^{35}$ J. J. Christensen, M. D. Slade, D. E. Smith, R. M. Izatt, and J. Tsang, J. Am. Chem. Soc., 1970, 92, 4164.
${ }_{36} \mathrm{Th}$. Ackermann and F. Schreiner, Z. Electrochem, 1958, 62, 1143.
${ }^{37}$ P. E. Gill and W. Murray, J. Inst. Maths and Its Applications, 1972, 8, 91.
${ }^{38}$ Routine EO4CGF, Nag Ltd., Oxford, 1977, Mark 6.
${ }^{39}$ B. A. Timini, Electrochim. Acta, 1974, 19, 149
${ }^{40}$ R. W. Gurney, ' Ionic Processes in Solution,' McGraw-Hill, New York, 1953.

41 M. Eigen, Angew Chem. Int. Ed. Engl., 1964, 3, 1.
42 See also J. R. Murdoch, J. Am. Chem. Soc., 1972, 94, 4410.
${ }^{43}$ W. J. Albery and B. H. Robinson, J. Chem. Soc., Favaday Trans. 1, 1969, 980.
${ }^{44}$ M. J. Blandamer, Adv. Phys. Org. Chem., 1977, 14, 203.

[^0]: Figure 3 Polynomial equation: dependence of $\Delta C_{p^{\theta}}$ and standard errors on temperature for (a) formic, (b) acetic, and (c) propionic acids; comparison with thermochemical data (\square) ${ }^{36}$ and $(\nabla))^{33}$ thermochemical data calculated ${ }^{35}$ assuming $\Delta C_{p}{ }^{\theta}$ is independent of temperature indicated by arrow

